Current view: Data table and detailed info
Taxonomic source(s)
del Hoyo, J., Collar, N.J., Christie, D.A., Elliott, A. and Fishpool, L.D.C. 2014. HBW and BirdLife International Illustrated Checklist of the Birds of the World. Volume 1: Non-passerines. Lynx Edicions BirdLife International, Barcelona, Spain and Cambridge, UK.
IUCN Red List criteria met and history
Red List criteria met
Red List history
Migratory status |
full migrant |
Forest dependency |
low |
Land-mass type |
continent
|
Average mass |
- |
Population justification: In 2006, the total population was estimated at 8,000-10,000 individuals (M. Diekmann in litt. 2006), roughly equivalent to 5,300-6,700 mature individuals. The global population estimate has been revised with an estimate of 4,700 pairs or 9,400 mature individuals (Allan 2015). Based on surveys, Hirschauer et al. (2020) estimated that the species's stronghold in the north-east, contained 3,560 breeding pairs, and that the stronghold contained 56-74% of the global population of mature individuals.
If the 3,560 breeding pairs represent 56% of the population, then the global population size may equate to 6,357 breeding pairs (12,714 mature individuals). If the stronghold represents 74% of the population, the global population size may equate to 4,810 breeding pairs (9,621 mature individuals). The population size is therefore placed in the band of 9,621-12,714 mature individuals, rounded here to 9,600 - 12,800 mature individuals.
Trend justification: Barnes (2000) estimated that the population declined by 10% between 1994-1995, which when expanded over 3 generation lengths (41.7 years [Bird et al. 2020]) equates to a decline rate of 58.4%. McKean and Botha (2007) also suggested that between 1992-2007, the populations in eastern South Africa declined by 60-70%, equivalent to a rate of 92-96% over 3 generation lengths, if the trend continued for that period. However, there is now evidence to suggest that the colonies have been increasing post 2007.
The north-eastern breeding region is likely to contain 56-74% of the mature individuals and is arguably the species stronghold (Hirschauer et al. 2020). In 1985, the best population estimate for the north-east region was 2,987 pairs. In 2019, the population was estimated at 3,560 pairs (Hirschauer et al. 2020), indicating that over the 34 years, the population in the stronghold has been stable to increasing. Between 2012-2019, 6 out of 10 colonies in the region were monitored every year by Hirschauer et al. (2020). During that time, the population at these colonies increased from a total of 1,561 breeding pairs in 2012 to 2,152 in 2019. This is an increase of c.38% in 7 years, equivalent to 4.7% per annum, however the smallest colony at Moletjie decreased during that time (Hirschauer et al. 2020). Data collected by Wolter et al. (2016) also suggests that multiple colonies in South Africa and Botswana are stable or increasing. This is further supported by Goikantswemang et al. (2021). The chick count at the Blouberg colony, the largest known breeding colony, has increased from 626 chicks in 2006, to 1,483 chicks in 2020 (J. van Wyk and D. Pretorius via A. Botha in litt. 2021). The Potberg colony in the south has also steadily increased c.2010-2019 (Hirschauer et al. 2020).
Longer-term studies have also evidenced population increases. One of the largest colonies in the north-east is the Kransberg colony (Hirschauer et al. 2020). Analysis by Benson and McClure (2020) found that this population declined between 1983-2003 from 916 pairs to 579 pairs (a rate of decline of 2.25% per annum). Between 2004 and 2017, the colony then increased from c.579 pairs to 849 pairs (a rate of increase of 2.65% per annum). The overall trend of the colony from 1983-2017 was a decline at a rate of 0.24% per annum (Benson and McClure 2020). Over three generations, a 0.24% pa decline equates to a 9.5% reduction. While the authors of this study state that globally, the Cape Vulture population is in decline, they also project that if the overall trend of 1983-2017 continues, the Kransberg colony will likely be stable. They alternatively project that if the 2004-2017 trend continues, there is a 98% likelihood that the Kransberg population will increase into the future (Benson and McClure 2020).
The composite index by Ogada et al. (2016) suggested an annual rate of decline of 5.1% for this species, and an equating projected decline of 89% over 3 generations. However, according to Benson and McClure (2020), the data used by Ogada et al. (2016) was collected pre-2000, and consequently would not have taken into account the population increases in the Kransberg colony. Therefore, if the northern colonies are increasing, such a high decline is unlikely to be correct (K. Shaw in litt. 2015). Benson and McClure (2020) also found that when they added the trends for 1983-2017 and 1983-2003 to the index, the trend inference remained the same as Ogada et al. (2016). However, when they added the 2004-2017 trend, the uncertainty of the model greatly increased, and the trend switched from almost certainly declining to possibly increasing.
The south-eastern breeding region, which may hold up to 42% of the breeding individuals (Allan et al. 2015), has contracted, and the peripheral colonies in Namibia, Zimbabwe, and Eswatini have all been extirpated within the last 40 years (Hirschauer et al. 2020). However, the remaining colonies have shown increases in the number of active nests between 2000-2013 (Benson 2015). Data from the Oribi Gorge colony in South Africa indicates that the number of breeding pairs has increased from 39 in 2011, to 94 in c.2019 (K. Shaw in litt. 2021).
Numbers at some colonies appear to have dropped between 2020 and 2021, with a reduction of 27% at Skeerpoort, 16% at Kransberg, and 8% at Manutsa (Wolter et al. unpublished data via R. Kemp, K. Wolter and C. G. Hannweg in litt. 2021). However, this may have been due to emigration to other colonies or other specific factors relation to this particular breeding season, and it is difficult to draw any conclusions from this in comparison to the long-term trend data (W. Goodwin in litt. 2021).
Allan (2015) estimated that the species declined by 66-81% between c.1960-2015, equivalent to a rate of decline of 55-71% over 3 generations. However, these figures relied on individuals not moving between breeding colonies (P. Benson in litt. 2016). Genetic evidence from Kleinhans and Willows-Munro (2019) suggests that the south-eastern region facilitates movement between the north-east, and the geographically isolated Potberg colony in the west, and therefore the rate of decline may not be so high.
While the population overall is declining (Benson and McClure 2020), the overall rate of decline is unlikely to be as high as previously thought. Previous estimates of rates of decline range from 55-96% [55-71% (Allan 2015), 58.4% (Barnes 2000), 89% (Ogada et al. 2016) and 92-96% (McKean and Botha 2007)]. However, the figure from McKean and Botha (2007) was from the north-eastern population, which is not the species stronghold, and the models used by Ogada et al. (2016) to derive their figure did not account for recorded population increases. Therefore, they are not likely to be representative of the true global decline rate. Furthermore, the declines suggested by Allan (2015) are dependent on there being no movement between populations, and evidence now confirms that there is cross movement, and that the suggested figures are likely too high. While rates of decline may vary in different areas, taking into consideration the inefficacy of previous models, new information on population dynamics, and evidence of recent increases in stronghold colonies, it is suspected that the rate of decline likely falls in the band 30-49% Given that the threats causing declines are likely to continue, it is tentatively assumed that the decline will continue at the same rate into the future.
Country/territory distribution
Important Bird and Biodiversity Areas (IBA)
Recommended citation
BirdLife International (2024) Species factsheet: Cape Vulture Gyps coprotheres. Downloaded from
https://datazone.birdlife.org/species/factsheet/cape-vulture-gyps-coprotheres on 22/12/2024.
Recommended citation for factsheets for more than one species: BirdLife International (2024) IUCN Red List for birds. Downloaded from
https://datazone.birdlife.org/species/search on 22/12/2024.