Emperor Penguin Aptenodytes forsteri


Justification of Red List Category
This species has been uplisted to Near Threatened because it is projected to undergo a moderately rapid population decline over the next three generations owing to the effects of projected climate change. However, it should be noted that there is considerable uncertainty over future climatic changes and how these will impact the species.

Population justification

A survey of satellite images from 2009 found 46 colonies containing c.238,000 breeding pairs, suggesting a total of c.595,000 individuals (Fretwell et al. 2012). Since then, a further seven colonies have been discovered bringing the total number to 53 (Fretwell, pers. com.). The global population estimate has not yet been updated.

Trend justification
An analysis carried out by Ainley et al. (2010) suggests that all colonies north of 67-68°S could be lost when Earth's tropospheric temperature reaches 2°C above pre-industrial levels, with negative impacts on all colonies north of 70°S. In this study, 2042 is the median year (range 2025-2052) at which a 2°C warming is  forecast to be exceeded by the four climate models used (those models used in the IPCC Fourth Assessment Report [AR4] that most closely predicted data collected on environmental conditions in the Southern Ocean over recent decades) (Ainley  et al. 2010).  An ensemble of these models was then used to predict changes in climate and  habitat in the Southern Ocean until 2025-2052, namely sea ice extent,  persistence, concentration and thickness, wind speeds, precipitation and  air temperature. Predictions were then made based on historic responses of the species to past variations in environmental conditions (Ainley et al. 2010). According to a survey of satellite images by Fretwell  et al. (2012), the global population in 2009 is estimated at c.238,000 breeding pairs, including nine colonies north of 67°S, accounting for c.36,600 pairs. Assuming the loss of these colonies and an exponential population trend, BirdLife International has projected that a decline of c.27% in the number of breeding pairs will occur over the next 61 years (three generations). There are substantial uncertainties over future changes in the patterns of weather variables and how these are likely to impact the species, as well as whether there will be a lag in the decline of mature individuals as recruitment falls, or whether this decline will be proportional to the loss of colonies as climatic changes result in the increased mortality of mature individuals. The relocation of A. forsteri colonies will be limited by decreases in sea ice thickness, making it more difficult for them to  find stable, long-lasting fast ice for breeding (Ainley  et al. 2010). Colonies could  conceivably move to any areas of coastline not affected by ridges formed  by wind-blown pack ice; however, where this has occurred in the past it  has been regarded as a rare event. Importantly, it has been argued that a simple latitudinal gradient in the loss of  sea ice is unlikely, and that warming has so far been regional in the Antarctic (Zwally  et al. 2002, Turner et al. 2009, Trathan et al. 2011, Fretwell et al. 2012). With these uncertainties in mind, a precautionary approach is taken, and the population is projected to decline by 20-29% over the next three generations.

Distribution and population

Aptenodytes forsteri has a circumpolar range, restricted when breeding to the coast of Antarctica where breeding colonies occur right around the continent (Fretwell et al. 2012). At least ¾ of the breeding colonies of this species are vulnerable to predicted changes in sea ice conditions and 1/5 may be quasi-extinct by 2100 (Jenouvrier et al. 2014). There are regional variations in population declines but colonies located north of 70°S have a probability of 46% to decrease by up to >90% by the end of this century (Jenouvrier et al. 2014).  


This species is marine and pelagic, feeding mainly on fish in Antarctic waters (although krill and cephalopods can be important dietary components). It breeds almost exclusively on fast ice near the coast or on the coast itself, sometimes up to as much as 200 km from the open sea. Only one known colony occurs wholly on land (Robertson et al. 2014) while a small number uses available land for parts of their breeding cycle. Four colonies are known to locate at least temporarily onto the top of ice shelves (Fretwell et al. 2014). It has an annual breeding cycle, arriving at colonies in late March to April, and lays eggs in May/ June. Chicks fledge in December/January (del Hoyo et al. 1992).


Conservation actions

Conservation Actions Underway
The species is the subject of on-going international research but there are currently no special conservation activities. Human disturbance is strictly regulated in some areas (Antarctic Specially Protected Areas).

Conservation Actions Proposed
Conduct regular surveys to monitor population trends. Continue to improve on existing modelling work to better predict future population changes. Carry out further research into the species' ecology to improve understanding of how environmental changes will affect the population. Continue to monitor the thickness, extent and persistence of Antarctic sea ice, and other environmental variables to assess the availability of suitable breeding habitat. Continue international work to tackle the drivers of projected climate change.


Text account compilers
Butchart, S., Calvert, R., Ekstrom, J., Moreno, R., Taylor, J., Trathan, P., Wienecke, B.

Fretwell, P., Wienecke, B., Ballard, G., Schmidt, A., Kooyman, G., Trathan, P., DuBois, L., Schneider, T., Ainley, D., Makhado, A., Woehler, E.

Recommended citation
BirdLife International (2017) Species factsheet: Aptenodytes forsteri. Downloaded from http://www.birdlife.org on 18/10/2017. Recommended citation for factsheets for more than one species: BirdLife International (2017) IUCN Red List for birds. Downloaded from http://www.birdlife.org on 18/10/2017.