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Introduction

Identification of “hotspots of activity” (e.g. as BirdLife marine Important Bird Areas and/or
Convention on Biological Diversity Ecologically or Biologically Significant marine Areas) for wide
ranging, pelagic species (such as seabirds) is likely to rely heavily on tracking data. In recent years
major advances have been made in how best to interpret the data, using a variety of analytical
techniques, to draw the most robust conclusions about the most important areas.

To assist this process, in 2009, BirdLife International and CNRS, Chize, France convened a workshop
to investigate the use of satellite tracking data for identifying marine IBAs. BirdLife has since
developed a methodology for undertaking this type of analysis. However, approaches rely heavily on
the extent of data and can only identify sites for populations represented by them. For these
reasons, the uses of additional analytical techniques are being investigated. Habitat modelling has
been identified as a key tool for refining these sites, and currently offers the best opportunity for
predicting the location of hotspots in unsurveyed areas. Habitat modelling is thought to be
particularly useful for:

 Better understanding the extent of suitable habitat and (potential) distribution of the population
at present, past and futures (spatio-temporal predictions)

 Understanding animal movement (during breeding, migration) and identify key relationships
between species and their environment.

 Inferring potential sites away from sampled areas (spatial predictions).
 Helping refine site boundaries and placement
 Potentially providing estimates of abundance within a species distribution.
 Understanding the habitat use by seabirds within EEZ’s or other jurisdictional boundaries

Similar questions are also being raised in the scientific research community where telemetry studies
have moved away from simple description of animal distributions, and toward empirically explaining
and predicting distributions under future climate scenarios and for other populations.

A number of habitat modelling techniques are now published and there has been widespread
application using conventional data types (such as at-sea survey data). However, their application for
more complicated data types, such as telemetry data, is less well advanced. To this end, BirdLife
International and IMAR, University of Coimbra convened a workshop to bring together scientists
familiar with seabird ecology, telemetry data and habitat modelling techniques to discuss
approaches and methodologies to advance the scientific best practice techniques for habitat
modelling, and identify the approaches which could be readily applied by BirdLife in its marine IBA
work.



Aims

With such issues in mind, the workshop was organised to bring together scientists and researchers
working with tracking data to discuss methodologies and approaches to using the data in habitat
modelling. The aim was for workshop participants to make recommendations about how they can
best be applied to the identification of “hotspots of activity”, particularly for seabirds, but also
drawing on experience from analysis of, and applicable to, other mobile pelagic taxa.

Specific aims were:-

- To develop ‘optimum’ (i.e. the most rigorous and comprehensive) methodologies for
modelling habitat preference using tracking data,

- To develop ‘pragmatic’ approaches for use in designation of marine IBAs and EBSAs,
considering the necessary balance between reliability of results and ease of application and
taking particular account of logistical and sample size restrictions.

- To develop data standards regarding input of tracking data and environmental variables to
habitat modelling approaches

- To compile relevant information in a document/report describing the available approaches,
the circumstances when they are most suitable, and some of the limitations in their use.

- The proceedings from the workshop will be captured in a ‘layman’s report’ for use at the
science/policy interface, as part of BirdLife’s marine IBA toolkit.

Figure 1: Flow chart showing various stages of a habitat modelling process. At each stage decisions
and interpretation of data are required if resulting models are to be successful and meaningful.

The habitat modelling process may be broken into stages, as per the graphic in Figure 1 above.
During the workshop the various options available under each stage were presented, and the
benefits and limitations of each choice discussed. The aim was to place existing experiences within
this framework to see which combinations are already well understood, and identify gaps that may
be explored in the future.
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Summary of the workshop

The first half-day of the workshop was a public open session, and was attended by workshop
participants as well as students and staff from the University of Coimbra. Around 100 people
attended this session.

This session provided an introduction to the work of BirdLife’s Global Seabird Programme, the
history and progress made in identifying marine IBAs within the BirdLife Partnership and highlighted
the importance of ensuring that habitat modelling approaches can be easily applied and shared
throughout the BirdLife Partnership.

Additional presentations highlighted the utility of habitat modelling in understanding and predicting
seabird distributions, as well as highlighting the importance of ensuring approaches and their
outputs were relevant and understandable to policy.

A summary of studies showed how modelling can improve our understanding of seabird ecology and
be useful for predicting future changes. For example long term studies have shown that habitat
modelling can be used to predict the implications of climate change (La Bohec et al, 2008).

The importance of relating distributions and analyses such as habitat modelling to feeding ecology
and actual biological processes highlighted that it is important to keep such ecology in mind and not
focus only on the technical approach.

The rest of the workshop was limited to invited participants and included a combination of talks that
discussed various modelling techniques in greater detail, discussion sessions on environmental
variables and break out groups to develop new ideas.

The final day was put aside as a practical session to trial some of the ideas developed.



Summary of existing experiences

The combined experience of workshop attendees was collated into table 1 below. GPS, PTT and GLS
are the devices for which there is most experience, other devices may be appropriate but are
becoming outdated and less frequently used (eg compass loggers and VHF) making them less
practical for wide ranging species.

Table1: Workshop attendee experience with habitat modelling of telemetry data. GAM – Generalised
Additive Model, GLM – Generalised Linear Model, GAMM – Generalised Additive Mixed Model, ENFA -
Environmental Niche Factor Analysis, SST – Sea Surface Temperature, ANOVA – Analysis of Variance

Further studies that make use of habitat modelling that were discussed included work with Boosted
Regression Trees, and ‘mboost. Additional published studies not represented at the workshop are
summarised in table 2.

Table 2: Additional published experience with habitat modelling of telemetry data.

During the course of the workshop several presentations were given that introduced some of the
modelling techniques in greater detail. Some of the key differences and approaches are highlighted
below.

Ramunas Zydelis – GAMs to predict distributions from geolocator data. (Zydelis et al, 2011)

- Binomial GAMs were fitted to post-breeding movements of Black-footed (Phoebastria nigripes)
and Laysan (Phoebastria immutabilis) Albatross (telemetered with geolocator archival tags).

- Locations were improved using Sea Surface Temperature matching algorithms.
- GAMs require absence data so Correlated Random Walks (CRWs) were used to calculate pseudo-

absence locations based on the movement parameters, and within the bounding box, of the
tracked birds.

Data type Preprocessing Response variable Model type Software used Attendee Reference

Geolocator
State-space modelled, SST

corrected
Presence/absence (Binary) GAMM R & WinBugs ALH

Geolocator
State-space modelled, SST

corrected
Density of Individuals GAMM R & WinBugs ALH

Geolocator SST corrected
Presence/absence

(absences from CRWs)
GAM R RZ Zydelis et al, 2011

Geolocator SST corrected Diving/non-diving Mixed effects ANOVA Matlab SS Shaffer et al, 2009

GPS None
Feeding/non-feeding

(calculated from speed)
Linear mixed model Matlab LT

PTT Speed filtered Time spent per cell GLMM R ML Louzao et al, 2011

PTT Speed filtered
ARS behaviour/non-ARS

behaviour
GLMM R ML Louzao et al, 2011

GPS
Degraded to frequency of

PTT
Feeding/non-feeding (from

stomach sensor)
GLMM R ML Louzao et al, 2011

Geolocator Filtered 50%UD/95%UD (Binary) GAM R LT
GPS None Diving (Presence only) ENFA Biomapper HS Skov et al, 2008
PTT Speed filtered Residency time GLMM R CP Peron et al, 2010

Data type Preprocessing Response variable Model type Software used Attendee Reference

PTT Speed filtered
Presence/absence (psuedo

absences)
GAMM R -- Wakefield et al, 2011

PTT Speed filtered
Presence/absence (psuedo

absences)
GAMM R -- Aarts et al, 2008

PTT Speed filtered First Passage Time value Linear mixed model Matlab -- Kappes et al, 2010

PTT
Resampled to every two

days
Presence only Maxent

Maxent
Software

-- Edren et al, 2010



- To account for locational error, environmental data were attributed to bird and pseudo-absence
locations using a kernel sampling approach.

- GAMs were improved using a backwards stepwise approach looking at AIC values.

Maite Louzao – Hierarchical approaches to modelling Albatross distribution (Louzao et al, 2011)

- Three scales of animal distribution/movements were modelled, percentage of time spent within
an area (normal distribution), whether the animals were foraging or passing (binomial
distribution), whether the birds were feeding or not (binomial distribution). Each was used as a
separate response variable in a separate model.

- The grid size used to calculate response variable (0.25º) was defined by the maximum resolution
of the available environmental data and tracking device error (mainly PTT).

- GLMMs were used and were favoured over GAMMs because they allow AIC robust values to be
calculated in a standard and well established statistical framework and hence it was possible to
use a multi-model inference approach.

- Spatial autocorrelation was tested in “best” model residuals and it was found to be non-
significant.

- Environmental covariates were excluded when correlation between environmental variables was
high.

Henrik Skov – Presence only modelling (Skov et al, 2008)

- Dive locations were modelled using Environmental Niche Factor Analyses (ENFA), this is a
presence only model so no absences were needed.

- Environmental data was normalised using box-cox algorithms
- Further environmental layers were calculated such as ocean fronts.
- ENFA can cope with collinearity so all data layers may be used.

Autumn-Lynn Harrison – Modelling ocean region occupancy

- GAMMs were fit to the likelihood of an animal being within a biogeographic region.
- All data was filtered with a state space model Kalman filter so that it was standardised across

data types.
- Species which were harvested (e.g. the tuna) caused large ‘tag bias’, with many short trips but

few completing a full migration. Weights, representing the number of trips at large during any
given day, were applied to the data to avoid this.

- The response variable was the biogeographic region occupied (from Longhurst classifications)
and the explanatory variables included day of the year.

- Large scale predictions can be made adding ecological meaning to species migrations.

Leigh Torres – Boosted Regression Trees (BRT)

- BRT applies regression tree analyses to describe and predict the associations between species
and their environment.

- Unlike most other regression techniques, BRT does not fit a single ‘best’ model to the data, but
rather fits an ensemble of many simple classification or regression tree models that partition
observations into groups with similar values. The boosting algorithm iteratively adds trees to the



final model in a stage-wise procedure that emphasizes those observations poorly fit by the
previous trees.

- Advantages to regression trees are that this modelling method can include continuous and
categorical data as predictors, can handle missing data in predictor variables, are immune to
outliers in data, can deal with irrelevant and correlated predictor variables, and can
automatically fit interactions between predictors.

- BRTs can generate predictive maps of species distribution based on the fitted associations.
- BRTs avoid over fitting by using cross-validation to progressively grow models while testing

predictive accuracy on withheld portions of the data.
- Boosted Regression Trees (BRTs) are a useful tool for modelling, and account for many of the

issues inherent in modelling telemetry data.
- Regression trees are good at selecting relevant variables and boosting overcomes inaccuracies in

any single tree.
- Cross validation is done within the model build and avoids over-fitting as the model grows.
- They can handle interactions between variables (thereby also tackling issues of collinearity) and

can handle both continuous and categorical data.

Workshop Recommendations

As highlighted in Figure 1 the analytical process can be split into various stages and these were
discussed in turn at the workshop. The paragraphs below indicate the main points of the discussions
for each of these stages. Text in bold indicate recommendations.

Habitat Modelling Inputs - Response variables

- Optimally, when different types of data exist (i.e. geolocator, PTT and GPS) tracking data
would be State-space model filtered to standardise. For large databases such as BirdLife’s,
however, this process would take over a year to complete. (ALH)

- PTT data should be filtered; commonly used filters are the Freitas filter and speed filters
(Freitas et al, 2008; BirdLife International, 2004; McConnell et al, 1992) (PT).

- There can be great benefit to applying SST correction because of issues with geolocating
during equinox periods when daylength is equal across all latitudes (SS).

- However, care should be taken when applying SST correction when water masses are not
stratified. When mixing occurs, the approach is not appropriate (RP).

- Many response variables may be used in modelling, however, the predictions from the model
will only relate to the input behaviour. It is important, therefore, that responses are relevant to
the desired prediction. In terms of IBAs, it would be more interesting to determine high
occurrence areas for rare species. In the case of wide-ranging species, it would be more
interesting to identify ecologically important areas such as where they spend more time or seek
for preys since it is not possible to protect their overall distribution range

- To obtain a representative overall distribution of a population, it would be necessary to test the
representativeness of the tracking dataset via discovery curvers. (PT, MM).

- Raw point locations can be used as presences in models but may require absences to be
generated, depending if a presence-only model is used (e.g. ENFA, Maxent).

- When absences are created they should be ecologically relevant, i.e. areas accessible to the
animals but actively not chosen. (PT)

- Correlated Random walks are a commonly used way to establish pseudo-absences, they may be
calculated using r scripts available online (eg. using ‘circular’ package)

- When creating pseudo absences the ratio of presences to absences can affect the model. 1:1 is
commonly agreed as best in model building (Wood, 2005; Zuur et al, 2009). However, 5:1 (Block



et al. 2011); 10:1 (LT) and 50:1 (RZ) have all been used successfully in modelling telemetry data
in the past.

- To establish the correct ratio Zydelis et al built a number of models with incrementally higher
ratios of absences to presences and investigated how this impacted the AUC of the model, the
ratio at which AUC values stabilised was used. This was agreed as useful, although pseudo-
absence generation still a contentious point with much discussion in the literature (Stokland et
al, 2011; Lobo et al, 2010) (SO, RZ)

- In some studies the average proportion of time spent by a tracked individual within a given area
has been used as a response; however, this assumes all trips, regardless of the duration of time
spent at sea, are equal, a number of other approaches accounting for the relative ‘importance’
of trips can be used. (CP, ML, RP)

- Presence only models (such as ENFA and Maxent) treat ‘background data’ (i.e. the study area)
as pseudo-absences. It is recommended, therefore, that similar rules to those defined above
for creating absences, are applied here to setting the ‘background’ and the environmental
input.

- Models using pseudo absences perform similarly to Maxent (presence only) models. (RZ)
- If we are modelling continuous data (e.g. time spent per cell) data may be zero-inflated.

Pragmatically we can get around this skew using a hierarchical (or Hurdle) model. However,
optimally we should model the data in a zero-inflated framework. (SO)

Habitat Modelling Inputs - Explanatory variables

- All modelling requires some a priori decisions about which environmental variables to consider
within the analyses. Assessing the variables that are important to our species and what
environmental data products are available should help ensure all relevant variables are included.

- Remote sensing is the pragmatic choice for environmental variables, the optimal needs to
consider water column variables as well, particularly for diving species

- Variables considered in this type of modelling should be either;
o Physical features which facilitate or constrain movement or;
o Physical or biological features that enhance productivity. (SS)

When it is available, prey distribution data should also be included. However, this is rarely the
case so we rely on proxies.
- As users of environmental data we should be aware of their origins and that while some data are

primary, many are derived products with their own uncertainty or with different temporal
relevance. Using these data types can add uncertainty to the model and this should be
accounted for. (SS)

- Some derived products, such as primary productivity (VGPM), are products of many other
variables, these products should not be used alongside the variables used to create them.

- Oceanographic data can be easily accessed via the ‘xtractomatic’ tool developed by NOAA, found
here (coastwatch.pfel.noaa.gov/xtracto) this now has Matlab and R implementations. (SS, ML)

- Variable interactions in linear and additive models should only be used when there is
ecological justification for combining them, i.e. when two variables characterise an
oceanographic feature. (SS)

- By categorising explanatory oceanographic variables best explaining a distribution as static or
dynamic, it may also be possible to characterise species distributions as static or dynamic – such
categorisation could be useful in MPA designation and suggested management (Louzao et al,
2011) (AH, ML).



- Different approaches (variables) may be needed for identifying dynamic vs static sites. Larger
sites may be needed to bound dynamic features within spatially appropriate buffers. Habitat
modelling may also help to in designing mobile protected areas, such as those of Turtle Watch
(Hawaii) and Polovina et al 2004 (turtles distribution modelled around sea surface height and
chlorophyll).

- It is likely that oceanographic fronts (including those that are beneath the surface and so cannot
be identified using remotely sensed data) explain much of marine predators distributions, we
would therefore benefit from working with oceanographers in identifying these or with using
oceanographic models as explanatory variables (such as CARS and ROMS). (HS, LT)

- Some environmental variables should be considered retrospectively. Louzao et al, 2009 Found
that high chlorophyll-a were affecting the movements of birds up to 5 months later, this is
likely due to the lag time as the energy moves up the food chain. (ML, JX, VP)

Fig: list of environmental variables discussed at the workshop that may help explain seabird
distributions and act as explanatory variables in habitat models (adapted from SS presentation).

Data Exploration

- Ecologists often violate statistical assumptions when applying models to data, this results in type
1 and type 2 errors which can result in ecologically inappropriate answers.

- Zuur et al (2009) present a framework for data exploration prior to model fitting, this
framework is recommended. (VP, PT)

- Correlation between explanatory variables should be investigated prior to model building.
Spearman rank correlation coefficient should be calculated between each pair of variables and



where there is a strong correlation (thresholds may vary, but 0.6 is frequently used) variables
should be considered highly correlated and only one should be used in model building. (VP)

- One option for deciding which correlated variable to drop is to fit two models, each with one of
the correlated variables, and use the variable whose model has the lowest AIC value. (CP, SO)

- Collinearity is not an issues in all model types (ENFA, MaxEnt, RandomForest and BRTs can
incorporate highly correlated data without violating model assumptions, for example). The
capabilities of the model should be understood before dropping variables. (LT)

- Test for homogeneity of variance and independence of response variables, these will influence
the model type. (VP)

Model Building

Using more conventional data types, such as vessel based line transects, it is possible to run a
number of different models on the same dataset and compare their utility and predictive power
directly.

Steffen Oppel – Comparing modelling techniques. (Oppel et al, in press)

- GLM, GAM, Boosted Regression Trees, Random Forests, Maxent and an ensemble model of all of
the above were fit to the same dataset of Balearic Shearwater observations from vessel based
line surveys using customised R code (also alternatively available in R package ‘BIOMOD’, except
for Maxent which has not been implemented as of November 2011).

- To avoid issues of zero inflated data a hierarchical model was built, first modelling
presence/absence, then modelling density where animal presence was recorded.

- Models were ranked based on their AUC values (75% of data was used to build the model, 25%
was used in this test).

- Models with similar AUC values actually resulted in drastically different spatial distributions. It is
therefore important to investigate prediction surfaces as well as statistical values when
evaluating models.

- Ensemble models were determined by weighting each of the component models based on their
AUC score.

- Density predictions were very poor in independent test data

Model fitting

- Following data preparation and exploration models can be fitted using a number of software
packages, these are well documented in the relevant literature but a short, non-exhaustive
summary is given here.
o GAMs and GLMs fit through ‘stats’, ‘gam’, ‘mgcv’,  packages in R
o GAMMs and GLMMs fit through ‘mgcv’, ‘lmer’, ‘MASS’ packages in R
o ENFA may be fit through ‘Biomapper’ standalone software or in the R packages

‘adehabitat’ and ‘ade4’.
o Maxent may be fit through either the ‘Maxent’ standalone software or the ‘maxent’ or

‘dismo’ packages in R
o BRT may be fit through ‘gbm’ package in R (plus ‘ROCR package’), further code available

in Elith et al, 2008, suppl material; or via the TreeNet software (Salford Systems)
o RandomForest can be fit with the ‘randomForest’ or ‘party’ packages in R, or via the

RandomForest software (Salford Systems)



o Biomapper is a GIS kit - and statistical tools designed to build habitat suitability (HS)
models and maps. It is centered on the Ecological Niche Factor Analysis

o R package ‘BIOMOD’ (which also exists as a free standalone software) is a computer
platform for ensemble forecasting of species distributions, enabling the treatment of a
range of methodological uncertainties in models and the examination of species-
environment relationships.

When fitting models the following additional considerations are recommended.
- When fitting models to autocorrelated data, adding an autoregressive term (as per Peron et al,

2010; Zuur et al, 2009) which may be calculated using R packages ‘lmer’ and ‘armaFit’ function
(‘fSeries’ package), significantly improves the model fit. (CP, ML)

- When homogeneity of variance and independence of response variables are violated, mixed
effect models can be used to overcome those violations. (VP)

- When multiple trips from individuals are used, the individual’s identity should be used as a
random effect. (VP)

- Random effects cannot be added to algorithmic models such as boosted regression trees or
RandomForest, however, the data can be split along individuals for model evaluation, thus
achieving a similar outcome as linear random effects models (Buston & Elith, 2011) (SO)

Model evaluation

- Cross Validation
- AUC values are frequently used for testing model fit and predictive power. However, actual

predictions may be different for similar AUCs, it is therefore important to investigate calibration
and prediction surfaces as well as statistical tests when comparing models (Phillips & Elith,
2010). (SO)

- Statistical comparison of predictive performance (tested using cross validation) should be used
for all models, particularly those for which AIC values cannot be calculated (such as GAMMs).
(SO, ML)



Practical Session

Following talks and discussion a practical session was set up to test some of the discussed
approaches on common datasets. Three datasets were made available to the workshop, and Table 3
below, shows which approaches were tested;

 PTT data of Laysan Albatross (Phoebastria immutabilis) movements during the incubation
period (provided by Scott Shaffer)

 GPS data of Cory’s Shearwater (Calonectris diomedea) movements during breeding
(provided by Vitor Paiva)

 Geolocator data of White-chinned Petrel (Procellaria aequinoctialis)distribution during non-
breeding (provided by Richard Phillips and BAS)

Dataset Presences Absences Model(s) Reference Findings
Laysan
PTT

ARS Non-ARS BIOMOD S. Oppel From BIOMOD: Random Forest (RF) best AUC (0.8),
BRT also good, GLM worst. Also ran RF in separate
R package and got same result as BIOMOD
(Validation)

Corys GPS ARS/Time
per cell?

Non-ARS Boosted
Algorithm

M. Louzao Boosted Algorithm can’t explain relative variable
importance but good for describing variable
relationships

Corys GPS ARS Non-ARS GLMM C. Peron Model able to detect and remove collinearity
between variables

Corys GPS ARS Non-ARS ENFA H. Skov Approach appears to work well. Good predictive
map, Variables; bathymetry, SLA and SST explain
96.4% of total variance. V. high AUC (0.95) possibly
due to low spatial resolution (1 deg)

Laysan
PTT

ARS Non-ARS BRT L. Torres Appeared to work well, variable relationships look
good. Suspiciously high AUC values.

Laysan
PTT

Points Random
pseudo-a

BRT L. Torres To be run…

WC Petrel
GLS

Points Random
pseudo-a

BRT L.Torres To be run…

Table 3: Modelling approaches trialled during the workshop practical session

To pragmatically calculate response variable the workshop practical session modelled foraging vs
non-foraging (based on velocity) for GPS data, ARS vs non-ARS from PTT data, and presences vs
pseudo-absences for GLS data (following Louzao et al, 2011; Zydelis et al, 2011)

Steffen Oppel – BIOMOD

- Movements of Laysan Albatross from French Frigate Shoals during incubation were modelled
- ARS vs non-ARS was used as a response variable to model the probability of a bird foraging in an

area.
- All available explanatory variables were input in untransformed form.
- No factors were included.
- The data was split to use 36% as a testing dataset and 64% for model training.
- Initially the split was done based on individuals (i.e. some individuals were used to train the

model, others to test it). However, this resulted in very poor predictive performance of the model



(which may indicate one individuals behaviour cannot be used to estimate another’s). Therefore
splitting randomly within individuals’ data was preferred.

- BIOMOD fit:
GLM with quadratic functions for all variables and using a stepwise AIC fit.
GAM with a ‘smooth spline’ of 3
Random Forests
GBM boosted regression trees, with a maximum of 3000 trees.
Artificial Neural Networks with two fold cross-validation
Multivariate adaptive regression splines (MARS)

- BIOMOD proved pragmatic and took only 11 minutes to run 5 cross-validations of all 6 models.
- The results indicated that boosted regression trees and random forests provided the best

predictions.
- All techniques found distance from land to be an influential variable.
- The two best models used all variables to some degree.
- GAM, GLM, MARS and ANN removed some variables (such as Wind) as not significant.
- The 6 different models provide very different predictions of ARS behaviour.
- By creating an ensemble model, these differences can be smoothed.

- BIOMOD proved pragmatic and useful for testing the variability between model predictions.
Boosted Regression Trees and Random Forests performed best out of all models.

Henrik Skov – ENFA

- Movements of Cory’s Shearwater from Selvagems Island were modelled.
- ARS were modelled to identify probability of foraging.
- ARS locations were counted within 1 degree grid cells so that there was a common scale across

presences and all environmental data.
- 6 environmental explanatory variables were extracted for an area around NW Africa.
- Because ENFA is insensitive to collinearity, all data layers were used.
- All explanatory variables were Box-Cox transformed to normalise.
- The model was fit using the BIOMAPPER software.
- Bathymetry and primary productivity were shown to be the most significant explanatory

variables.
- The model scored an AUC value of 0.95 showing it was a good fit.

ENFA was easily applied and provided useful results. It now needs to be tested on different
datasets.

Leigh Torres – BRT

- Movements of Laysan Albatross from French Frigate Shoals during incubation were modelled
- All available explanatory variables were input in untransformed form (SST. CHLA, SLA, VGPM,

WIND, WAVE, BATHY, SLOPE, DIST_LAND)
- No factors were included.
The data was split to use 36% as a testing dataset and 64% for model training



- Initially, ARS vs non-ARS was used as a response variable to model the probability of a bird
foraging in an area. However, this approach did not work well because of poor classification of
points based on ARS. This approach may work well with BRT, but was not tested adequately due
to time limitations.

- Pseudo-absences were generated within a minimum convex polygon of tracking data. Twice as
many presence points (n=2355) were generated as pseudo-absence points (n=4710).

- The BRT model was run using a variable learning rate of 0.0025.
- The BRT model produced a % deviance of 0.506, AUC of 0.927, and a correlation coefficient of

0.758.
- The contributions of each predictor to the model were:

var   rel.inf
1     BATHY 19.334446
2     DIST_LAND 19.173227
3      WAVE 14.756038
4      VGPM 12.934347
5 SST 11.120692
6      WIND  6.758337
7       SLA  6.344606
8     SLOPE  4.853876

9      CHLA  4.724432

- The model was validated with the withheld test data and produced an AUC of 0.99.
This AUC does seem suspiciously high, so perhaps some overfitting of the model occurred. However,
the prediction plots, functional plots, and model results all appear valid. Moreover, validation data
was independent. More testing is needed of the BRT method applied to tracking data, but clearly
there is some potential here.



Conclusions

The workshop succeeded in introducing to the group a wide range of habitat modelling techniques
that have been used to model and explain seabird distributions. Extended discussions were held on
developing data standards regarding input of tracking data and environmental variables to habitat
modelling approaches and these are captured in this report.

Due to time constraints in the practical session it was not possible to finalise all models and compare
their fit and predictions during the course of the workshop. However all of the examples undertaken
during the practical session did manage to fit at least one model, which shows that all tested
approaches were reasonably easy to apply and therefore were pragmatic. It should be noted that
due to the differing needs of each modelling approach, a range of model inputs were tested which
means that result are not completely comparable.

The workshop also concluded on approaches to develop a variety of model types (Figure 2). These
approaches provide a framework for future work, and further avenues of investigation which
BirdLife (and willing workshop attendees) will take forward and use for a comparison of models.



Figure 2: proposed future framework for developing a variety of model types



Name Email Institution
RP Richard Phillips raphil@bas.ac.uk British Antarctic Survey (BAS)
HW Henri Weimerskirch henriw@cebc.cnrs.fr Centre national de la recherche scientifique CNRS, Chize
SS Scott Shaffer scott.shaffer@sjsu.edu San Jose State University/Tagging of Pacific Predators (TOPP)
AH April Hedd ahedd@mun.ca Memorial University of Newfoundland
MLC Matthieu Le Corre lecorre@univ-reunion.fr University of Reunion/ECOMAR
BL Ben Lascelles ben.lascelles@birdlife.org BirdLife International - Cambridge
PT Phil Taylor phil.taylor@birdlife.org BirdLife International - Cambridge
MM Mark Miller mark.miller@birdlife.org BirdLife International - Cambridge
IR Iván Ramírez ivan.ramirez@birdlife.org BirdLife International - Brussels
ML Maite Louzao maite.louzao@gmail.com Spanish Institute of Oceanography
ALH Autumn-Lynn Harrison harrison@biology.ucsc.edu Univ. of California Santa Cruz/Tagging of Pacific Predators (TOPP)
AM Ana Meirinho ana.meirinho@spea.pt Sociedade portuguesa para o estudo das aves (SPEA)
VP Vitor Paiva vitorpaiva@gmail.com Institute of Marine Research (IMAR/CMA), University of Coimbra
JR Jaime Ramos jramos@ci.uc.pt Institute of Marine Research (IMAR/CMA), University of Coimbra
JX José Xavier jxavier@zoo.uc.pt Institute of Marine Research (IMAR/CMA), University of Coimbra
RZ Ramunas Zydelis rzy@dhi.dk DHI
LT Leigh Torres l.torres@niwa.co.nz National Institute of Water and Atmospheric Research (NIWA)
SO Steffen Oppel Steffen.Oppel@rspb.org.uk Royal Society for Protection of Birds (RSPB)
HS Henrik Skov hsk@dhigroup.com DHI Water and Environment
CP Clara Peron Clara.PERON@cefe.cnrs.fr Centre national de la recherche scientifique CNRS, Chize
KD Karine Delord delord@cebc.cnrs.fr Centre national de la recherche scientifique CNRS, Chize
CS Carlos Silva carlos.silva@spea.pt Sociedade portuguesa para o estudo das aves (SPEA)
NO Nuno Oliveira nuno.olivera@spea.pt Sociedade portuguesa para o estudo das aves (SPEA)
MB Mark Bolton Mark.Bolton@rspb.org.uk Royal Society for Protection of Birds (RSPB)
AC Albert Cama acama@seo.org SEO/BirdLife
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