Saker Falcon Falco cherrug


Justification of Red List Category
This species has been uplisted to Endangered because a revised population trend analysis indicates that it may be undergoing a very rapid decline. This negative trend is a result of unsustainable capture for the falconry trade, as well as habitat degradation and the impacts of agrochemicals, and the rate of decline appears to be particularly severe in the species's central Asian breeding grounds. This classification is highly uncertain and may be revised when new information becomes available. Surveys are urgently needed to produce more robust and less uncertain population estimates, in particular for China, Russia and Mongolia. Further research to monitor key populations and to clarify the extent of the threat from trapping and its effect on population trends is vital.

Population justification
The global population is estimated to number c.12,800-30,800 mature individuals, based on national population estimates of breeding pairs (Karyakin 2008, Dixon 2009, A. Dixon in litt. 2012, A. Levin in litt. 2012, BirdLife International unpubl. data) that total c.6,400-15,400 pairs (median c.10,900).

Trend justification
Assuming a generation length of 6.4 years and that the species's decline had already begun (at least in some areas) prior to the 1990s (consumption in the Middle East was heavy by the mid-1980s), the overall population trend during the 19-year period 1993-2012 equates to a 47% decline (based on median estimates), with a minimum-maximum decline of 2-75%. Given the substantial degree of uncertainty over the estimates used, the population trend is best placed precautionarily in the band for a 50-79% decline over three generations.

Distribution and population

This species occurs in a wide range across the Palearctic region from eastern Europe to western China, breeding in Austria, Bulgaria, Croatia, Czech RepublicGeorgiaHungary, Macedonia, Moldova, Romania, Russia, SerbiaSlovakia, TurkeyUkraine, Iraq, Armenia, Uzbekistan, Tajikistan, Kyrgyzstan, Kazakhstan, Mongolia and China, and at least formerly in Turkmenistan and probably Afghanistan, possibly India (Ladakh), with wintering or passage populations regularly in Italy, Malta, Cyprus, Israel, Jordan, Egypt, Libya, Sudan, South Sudan, Tunisia, Ethiopia, Kenya, Saudi Arabia, Yemen, Oman, U.A.E., Bahrain, Kuwait, Iran, Pakistan, India, Nepal, Afghanistan and Azerbaijan, with much smaller numbers or vagrants reaching many other countries (Baumgart 1991, 1994, Snow and Perrins 1998, Haines 2002, ERWDA 2003). The historical and present global population size remains subject to considerable uncertainty; however, a revised analysis of available data resulted in a global population estimate of c.17,400-28,800 breeding pairs (median c.22,100) in 1990, incorporating estimates for the most important range states as given by Moshkin (2010), with the largest numbers in China (3,000-7,000 pairs, median 5,000), Kazakhstan (4,808-5,628 pairs, median 5,218), Mongolia (2,792-6,980 pairs, median 3,884) and Russia (5,700-7,300 pairs, median 6,500), in addition to collated estimates for other countries (Haines 2002, Dixon 2007, 2009). A total population of c.6,400-15,400 pairs (median c.10,900) is calculated for 2010, including the most important range states of China (1,000-5,000 pairs, median 3,000 [A. Dixon in litt. 2012]), Kazakhstan (800-1,450 in 2011; median 1,125 pairs [A. Dixon and A. Levin in litt. 2012]), Mongolia (2,000-5,000 pairs, median 3,500 [Dixon 2009]) and Russia (1,854-2,542 in 2007, median 2,198 [Karyakin 2008]), and collated estimates for other countries (Haines 2002, Dixon 2007, 2009). The small European population is estimated at 350-500 pairs, equivalent to 710-990 mature individuals (BirdLife International 2015). The populations in Europe, and probably in Mongolia, are now increasing (A. Dixon in litt. 2012, BirdLife International 2015), but the overall population trend is estimated to be negative. Assuming a generation length of 6.4 years and that the decline in the species's population had already begun (at least in some areas) prior to the 1990s (consumption in the Middle East was heavy by the mid-1980s), the overall population trend during the 19-year period 1993-2012 equates to a 47% decline (based on median estimates), with a minimum-maximum decline of 2-75%. Given considerable uncertainty over the population estimates used, the species is precautionarily estimated to be declining by at least 50% over three generations.


It is physically adapted to hunting close to the ground in open terrain, combining rapid acceleration with high manoeuvrability, thus specialising on mid-sized diurnal terrestrial rodents (especially ground squirrels Citellus) of open grassy landscapes such as desert edge, semi-desert, steppes and arid montane areas; in some areas, particularly near water, it switches to birds as key prey, and has recently substituted domestic pigeons for rodents in parts of Europe (Baumgart 1991, Snow and Perrins 1998). It uses copses or cliffs for nest sites (sometimes even the ground), occupying the old nests of other birds (Baumgart 1991, Snow and Perrins 1998). Clutch size varies from two to six, with means from 3.2-3.9 in different circumstances (Baumgart 1991, Snow and Perrins 1998). Breeding success varies with year (especially in areas where rodents cycle) (Baumgart 1991, Snow and Perrins 1998). The species usually occurs singly or in pairs (Ferguson-Lees and Christie 2001). Birds are sedentary, part-migratory or fully migratory, largely depending on the extent to which food supply in breeding areas disappears in winter (Baumgart 1991, Snow and Perrins 1998). Migrant birds winter in East Africa, southern Europe and southern Asia, and generally leave their breeding grounds in September and October, returning between February and May (del Hoyo et al. 1994).


In Europe, this species has suffered mainly from the loss and degradation of steppes and dry grasslands through agricultural intensification, plantation establishment and declines in sheep pastoralism, causing a decline in key prey species; offtake for falconry is a serious problem, which has caused local extinctions (Baumgart 1991, 1994, K. Ruskov in litt. 2007). In eastern Hungary, landscape reversion following the abandonment of agriculture could have a negative influence, as most prey species require short swards that are maintained by agricultural practices (S. Nagy in litt. 2007). Elsewhere, declines are mainly attributable to offtake for falconry, although persecution, pesticide use (notably in Mongolia in 2003) and agrochemical deployment play a lesser part (Baumgart 1991, Remple 1994, Barton 2000, Riddle and Eastham et al. 2000, Fox 2002, Haines 2002, ERWDA 2003). The number trapped annually for Middle East falconers has been estimated at 4,000 in Saudi Arabia, 1,000 in Qatar and 500-1,000 in each of Bahrain, Kuwait and U.A.E., which, allowing for a 5% mortality prior to receipt, indicates an annual consumption of 6,825-8,400 birds (Fox 2002, ERWDA 2003). Of these, the great majority (77%) were believed to be juvenile females, followed by 19% adult females, 3% juvenile males and 1% adult males, potentially creating a major bias in the wild population (Fox 2002, ERWDA 2003). Another study, however, gives a far lower estimate for numbers legally trapped in Saudi Arabia, at an average of 22 birds per year in the period 2002-2009 (M. Shobrak in litt. 2010). Hybridisation with escaped or released hybrid falcons could influence the genetic integrity of wild populations (S. Nagy in litt. 2007, Nittinger et al. 2007). On the Qinghai-Tibetan plateau in China, policies to control rodents and herding practices, along with the development of hydroelectric dams and human settlements with electricity power infrastructure, have the potential to impact the population (A. Dixon in litt. 2012).

Conservation actions

Conservation Actions Underway
This is a protected and Red-listed species in many range states, particularly in the western parts of its range (Baumgart 1991, 1994). It is listed on CMS Appendix I and II (as of November 2011, and excluding the Mongolian population) and CITES Appendix II, and in 2002 CITES imposed a trade ban on UAE, strongly affecting the unregulated market there (Fox 2002). It occurs in a number of protected areas across its range. Intensive wardening and management has produced a steadily rising population in Hungary (Baumgart 1994). Controls of illegal trade were implemented in various countries in western range in 1990s (Baumgart 1994). Captive breeding has developed strongly in some countries, including U.A.E., as a means of substituting farmed for wild-caught birds (Riddle and Remple 1994, N. Fox in litt. 2002). Clinics have also been set up to improve the longevity and availability of wild-caught birds in various Gulf states (Riddle and Remple 1994, Bailey et al. 2001). New research programmes in many parts of the range have begun to establish baseline data on distribution, population, ecology and threats. In Mongolia, the process of erecting 5,000 artificial nests has begun, funded by the Environment Agency Abu Dhabi, which are predicted to provide nesting sites for up to 500 pairs by 2015 (A. Dixon in litt. 2010). As a product of the resolution resulting from CMS COP10 in November 2011, a Saker Falcon Task Force was established and met for the first time in March 2012 in Abu Dhabi (U.A.E.). The task force has the objective of involving range states, partners and interested parties in the development of a coordinated Global Action Plan for the species's conservation, including a management and monitoring framework. Conservation efforts in Europe have resulted in positive population trends (A. Dixon in litt. 2012).

Conservation Actions Proposed
Maintain or implement programmes of population and habitat management throughout the range. Maintain or improve systems of wardening and customs control (including DNA sampling to check provenance of traded birds). Continue key biological research (Baumgart 1991, 1994). Enforce CITES regulations, particularly in the Middle East and Asia. Improve exportation standards including meeting IATA transportation specifications. Improve import regulations, staff capacity and practices (quarantine facilities). Monitor markets to quantify falcon trade. Develop existing microchipping schemes to help monitor and regulate trade and quantify its effects. Increase awareness of health and conservation issues among falconers. Continue studying, monitoring and censusing the species throughout its range. Maintain ecologically and socially sustainable grazing systems to ensure long-term survival of key prey species. Bring greater protection (against conversion, degradation and pollution) to key breeding environments (Baumgart 1991, Bailey et al. 2001, Fox 2002, ERWDA 2003).


Text account compilers
Butchart, S., Collar, N., Gilroy, J., Symes, A., Taylor, J., Khwaja, N. & Ashpole, J

Andersen, M., Attila, M., Balazs, I., Burfield, I., Dixon, A., Fox, N., Galushin, V., Iankov, P., Kamp, J., Karyakin, I., Katzner, T., Kenward, R., Kovács, A., Levin, A., Luca, D., Nagy, A., Nagy, S., Nikolenko, E., Olvedi, S., Onon, Y., Parau, L., Pechacek, P., Potapov, E., Prommer, M., Sandor, A., Shobrak, M., Spasov, S. & Spina, F.

Recommended citation
BirdLife International (2017) Species factsheet: Falco cherrug. Downloaded from http://www.birdlife.org on 01/05/2017. Recommended citation for factsheets for more than one species: BirdLife International (2017) IUCN Red List for birds. Downloaded from http://www.birdlife.org on 01/05/2017.